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The assumption of the continuous case of association which is that all species of particles are always present 
is discussed. It is shown that a more appropriate model of the liquid or solid is given by the discontinuous 
case which postulates that certain smaller species are completely absent. A discussion of the nature and 
cause of the gas-liquid transition is given. This transition coincides with the change from a treatment by 
the continuous case to the discontinuous case. Various modifications of the mathematical treatment are 
derived and discussed. 

In previous work1 •2 a theory of association of matter 
was presented which led to an equation of state3 and 
finally to a derivation of Tait's equation. 4 This theory 
'\'as applied both to liquids5 and solids6 and showed 
success in enabling us to calculate the atomic radii7 of 
the five alkali metals from a knowledge of their com
pressibility data and their crystal form. However, a 
further detailed examination of the equations in this 
theory showed that there were some difficulties both 
conceptually and mathematically. Among other 
things, the number of I-mers in liquids and solids under 
high pressure calculated by this theory were found to be 
too great. Careful analysis of the equations traced the 
difficulties to one assumption in the original derivation; 
this is the assumption that all species from I-mer to m
mers were always present. If in these derived equa
tions the concentration of any species became zero, then 
the mathematical equations broke down giving a 
singular case. This paper then is devoted to an exam
ination of this assumption and to the consequences of 
removing it.s restrictions. 

The Assumption of Continuous Distribution. The 
origin of this assumption probably lies in the kinetic 
derivation of the distribution equations, which assumes 
that we start with a hypothetical matrix of single atoms 
and from this build an associated substance. This is 
equivalent to assuming that we start a mass of matter at 

-

infinite volume where there are no collisions and sud
denly compress it to some arbitrary volume where the 
molecules start colliding and associating. This is an 
unnecessary concept, although a convenient one, since 
the same equations can be obtained by considering the 
equilibrium situation.s The concept of this assump
tion was reinforced by the thought experimenV in 
which the individual frames of a hypothetical motion 
picture of a gas were examined one by one. In such 
examination, I-mers, 2-mers, 3-mers, etc., were seen. 
From a dynamic point of view the 2-mers were static 
representations of binary collisions, the 3-mers, ternary 
collisions, etc. This picture is the one presented by the 
kinetic-molecular theory and is undoubtedly true of a 
gas. The extrapolation to liquids and solids came with 

(1) For a review article see: R. Ginell, p 41-48, "Advances in 
Thermophysical Properties at Extreme Temperatures and Pres
sures," S. Gratch, Ed., American Society of Mechanical Engineers, 
New York, N. Y., 1965. 

(2) R. Ginell, Ann. N. Y. Acad. Sci., 60,521 (1955). 

(3) R. Ginell, J. Chem. Phys., 23, 2395 (1955). 

(4) R. Ginell, ibid., 34. 1249 (1961); 34. 2174 (1961); 35, 1135 
(1961). 

(5) R. Ginell, ibid., 35.473 (1961). 

(6) R. Ginell and T . J . Quigley, J . Phys. Chem. Solids, 26. 1157 
(1965) . 

(7) R. Ginell and T. J. Quigley, ibid., 27. 1173 (1966). 

(8) R. Ginell and J. Shurgan, J. Chem. Phys., 23. 964 (1955). 
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the derivation of Tait's law, and the successes and 
troubles started at this point. 

The Liquid and Solid State. The correct approach is 
to extrapolate our thought experiment from the gas case 
described above to the liquid and solid cases. One 
must therefore look for an acceptable picture of a liquid 
and a solid. The subject of the nature of the liquid and 
solid state has been the subject of many papers and re
views, and an introduction to the current views can be 
found in a general text like Moelwyn-Hughes or Hirsch
felder, et al.,9 and need not be detailed here. How
ever, the association approach to liquids and solids is 
not widely known. Part of this problem has been con
sidered1o •lIa in connection with a discussion of close
packing in i-mers of large size, and the suggestion has 
been made that the essential difference between liquids 
and solids is one of symmetry. From this work it ap
pears that higher i-mers that are packed in 4- or 6-
symmetry give rise to particles of regular form which are 
recognizable as prototypes of crystals, while on the 
other hand higher i-mers that are packed in approxi
mate 5-symmetry form particles of irregular shape, full 
of voids that seem to correspond to our current views of 
the structure of liquids. This work showed, moreover, 
that particles in 5-symmetry had more bonds and hence 
are more stable, at least in the smaller sizes, than parti
cles in 6-symmetry. This symmetry difference leads to 
an explanation of the mechanism of nucleation. From 
our present work it seems that we must consider a liquid 
to consist of an array of such 5-symmetry particles sep
arated by defects, all in equilibrium. The equilibrium 
is due to I-mers breaking off one particle (i-mer), 
crossing the defect volume and joining another j-mer. 
The equation would be 

nl + nj ~ njH 

The number of such I-mers in the liquid is very small, 
the main bulk consisting of 5-symmetry i-mers. The 
equilibrium mechanism postulated here is very similar 
to the mechanism for the growth of crystals after hetero
geneous nucleation. lib 

If one lowers the pressure on the liquid, one ulti
mately reaches the vapor pressure of the liquid. This 
is the pressure which these I-mers exert in the liquid at 
this temperature. In solids, the process is the same ex
cept that the particles are now in 4- or 6-symmetry. 
Thus the liquid and solid both consist of large particles 
in 5- or 6- (or 4-) symmetry, respectively, in equilib
rium with I-mers. The question of whether 2-mers 
exist in the liquid depends in part on the abundance of 
I-mers. The quantity of 3-mers is still smaller and 
there undoubtedly is a gap between these small par
ticles and the large i-mers which form the bulk of the 
liquid or solid. In many ways this concept resembles 
Eyring's significant structures theory.12 This theory 
postulates that liquids are composed of a mixture of gas
like particles and solid-like particles. This is equiv-
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Figure 1. Straight line collision. The transfer of kinetic 
momentum is complete: (A) approach (origin of 
coordinates is on the 2-mer)i (B) collision (the shapes of the 
molecules are distorted from spherical symmetry during the 
collision although this is not shown. During the lifetime of the 
3-mer, the energy of the collision is stored as potential energy 
of distortion)i (C) departure (molecule at opposite end 
departs taking all the kinetic energy. This is only true for a 
strictly straight line molecule). 

alent to our I-mers and i-mers. The difference in the 
theories is that we specify that the j-mers are 5-sym
metric in liquids and 6- (or 4-) symmetric in solids, 
while Eyring's theory considers the solid-like particles 
to have the properties of solids and contains some arbi
trary parameters. Our theory enables one to explain 
nucleation and the conversion of liquids -to solids. 
This is impossible in Eyring's theory. 

Liquid-Gas Transition. The concept of a discon
tinuous distribution raises several questions. The 
first: how and why does this distribution arise, and 
why is it more applicable to liquids and solids. Qualita
tively this can be approached by a picture of this sort 
which turns out to give us a clearer understanding of the 
nature of the gas-liquid transition.13 Let us imagine 
that we have a gas at some elevated temperature. The 
particles present will probably be linear forms of the 
I-mer, 2-mer, 3-mer, 4-mer, and perhaps 5-mer. (Oc
casionally a linear form of a higher i-mer may form.) 
The lifetime of such particles is very short. Let us re
duce the temperature of the gas. The effect would be to 
decrease the energy and hence the velocity and momen-

(9) E . A. Moelwyn-Hughes, "Physical Chemistry," Pergamon Press, 
New York, N. Y., 1957; J. O. Hirschfelder, C . P. Curtiss, and 
R. B. Bird, "Molecular Theory of Gases and Liquids." Wiley, New 
York, N. Y., 1954. 

(10) R. Ginell, J. Chem. PhY8., 34.992 (1961). 

(11) (a) J. D. Bernal, Nature, 185. 68 (1960); Sci. Amer., 203. 124 
(~960); (b) S. E. Brown and R. Ginell. pp 109-118, "Symp. Nuclea
tIOn and Crystallization in Glasses and Melts," M. K. Reser, C . 
Smith, and C. H . Insley, Ed., American Ceramic Society 1962. 

(12) H . Eyring, T. Ree, and N. Hirai. Proc. Natl. Acad. Sci. U. S., 
44. 683 (1958), and subsequent papers. 

(13) R. Ginell, Proceeding of the 1st International Conference on 
!hermodynamics and Calorimetry, Sept 1-5, 1969, Warsaw, Poland, 
ill press. 
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Figure 2. Collision of a 2-mer and a I-mer. Partial transfer 
of kinetic momentum to rotational momentum. If the energy 
of impact is slight, collision may stop at step C. For a collision 
a little higher in energy, termination step may be step D. 
Step D is in equilibrium with step C and molecule will 
alternately have structure D and C. (A) approach; (B) 
collision: formation of first bond; (C) formation of second bond 
due to rotation (may stop at this stage); (D) degradation: 
breaking first bond. (Energy of collision too great to stop at 
C but may stop at this stage and oscillate between C and D); 
(E) complete degradation: breaking of second bond: 
(likelihood good that some rotational momentum remains, in 
part, in the molecule). 

tum of the particles. Since every collision, except a 
direct line collision (Figure 1) results in the transfer of 
some of the kinetic momentum into rotational momen
tum, there is time for additional bonds to form. From 
geometric concepts, direct line collisions are rare, hence 
extra bonds are usually formed (see Figure 2). This 
means that as higher j-mers form, they tend to be more 
complex in terms of the number of bonds that an individ
ual atom shares. The situation in the case of the forma
tion of the 4-mer from the 3-mer and the I-mer is shown 
in Figure 3. Here the 3-mer is triangular, and the rota
tion momentum of the 4-mer forces the formation of 
first, 1 additional bond and then 2 additional bonds. 
We would refer to such a bonding type as three-hole 
bonding (3-hole) since the triangular array of the 3-mer 
forms a hole bounded by 3 atoms. The breakup of such 
a bonded arrangement is simple. The bond was formed 
one bond at a time and breaks up one bond at a time. 
If we consider the energy of formation of a single bond 
to be the same, no matter where it occurs, and this is 
a plausible assumption at least as a first approximation, 
then the formation of a 3-hole bond consists of a series 
of three equally energetic steps while the reverse reac
tion of breakup of a 3-hole bond consists of the same 
three steps. 
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Figure 3. Bond formation in a 3-hole molecule: (A) 
approach; (B) first bond forms; (C) second bond forms; (D) 
third bond forms; (E) first bond breaks; (F) second bond 
breaks; (G) third bond breaks (departure). Process may stop 
at any of several stages. Transfer of kinetic momentum to 
rotational momentum most likely. Most stable structure 
(least energy) is D. The stages that are gone through and 
the amount of energy transferred depends largely on thp. 
quantity of energy in the collision and the exact geometry of 
the collision. 

As the temperature is lowered and still higher com
pact forms have time to form, j-mers with 4 and 5 holes 
appear. The behavior of such bonds is in one way sim
ilar and in another way quite different from the forma
tion of 3-hole bonds. In the formation of 4-hole bonds, 
the energy of the first step and the second step (Figure 
4) is the same as in the 3-hole bond. However, the 
third step is different. In the 4-hole bond two bonds 
are formed simultaneously in the third step, while in the 
3-hole bond only one bond is formed. The important 
difference is when we consider the process of breakup. 
In the 4-hole bond the first step demands that 2 bonds 
be broken simultaneously. This is energetically more 
difficult than breaking one bond. Hence energetics 
favor the 4-hole bond. It is more stable than the three
hole bond. In the 5-hole bond the stability of the bond 
increases still more, since 3 bonds are formed in the last 
step. Similar reasoning holds for the 6- and higher hole 
bonds. We call such highly stable particles multiply 
bonded structures. As the temperature of the gas is 
lowered, the point is reached where such multiply 
bonded structures start forming. Since they are more 
stable, they rapidly drain the gas of simply bonded 
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structures. Shortly this process results in the deple
tion of the simply bonded j-mers in the gas, and first the 
2-mer and then the 3-mer and 4-mer disappear from the 
gas. The concentration of 1-mers is also decreased at 
this time. At this point where multiply bonded struc
tures form there is an extra release of energy due to their 
formation. This compensates for the uniform dropping 
of the temperature, and a halt in the temperature drop 
ensues while the multiply bonded j-mers for either the 
liquid or the solid are forming. The fact that the 
species, 2-mer, 3-mer, etc. go to zero concentration re
sults in a breakdown of the mathematics of the con
tinuous case and results in a gap, giving rise to the dis
continuous case. 

Mathematical Derivation 
The problem is now to put these ideas into mathe

matical form. For simplicity we shall consider the 
case where a gap exists between the 1-mers and the a

mer where a is some larger number. The general re
actions existing are 

E('uilibrium constants 

Nl + Na ~ Na+l Kl,a 

Nl + Na+l ~ Na+2 Kl,a+l 

Nl + Nm_l ~ Nm Kl,m-l 

Nl = Nl 

Nj = 0 2 ~ j < a 

= N j a ~ j ~ m 

= 0 m<j 

where N j = number of moles of particles of size j in a 
mass of substance of w grams. 

The kinetic equations2 or equilibrium equations8 are 
the same as for the continuous case (where all species 
are present) as is the solution, if certain definitions are 
modified. In Table I are to be found the equations and 
definitions for both the continuous case and the discon
tinuous case (gap exists). As can be seen from the 
table, the discontinuous case can be considered a sin
gular case of the continuous case; a case where Kz be
comes zero as soon as anyone of the species disappears, 
or better, the continuous case can be considered a 
special case of the discontinuous case where a = 1. As 
can be seen, the discontinuous case reduces to the con
tinuous case when a = 1. 

Equation of State. The derivation for the equation 
of state does not change, and the equation of state for 
both cases is 

P(l - Elv) = CRT (1) 
m m 

where C is ];Cz and Elv = ]; EzCz where Ez IS the 
1 1 
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Figure 4. Bond formation ill a 4-hole molecules: CA) 
approach; (B) first bond forms; CC) second bond forms; CD) 
third and fourth bonds form simultaneously. Degradation in 
reverse order. 2 bonds breaking simultaneously is the first 
step. Atom 5 as shown is necessary since without atom 5 the 
square planar structure of 1, 2, 3, 4 is not stable to kinetic 
forces and will rearrange to a tetrahedral structure. 
In a collision of this sort kinetic momentum is transferred to 
rotational momentum. Loss of this energy may be by the 
same mechanism or by colliding with a more complex j-mer. 

covolume of a mole of x-mers. Hence this equation of 
state is valid for gases, liquids, and solids. 

The Compressibility Equation. The point where the 
serious changes occur is in the equations derived from 
the compressibility equation. If one takes the deriva
tive of the equation of state (eq 1) at constant tempera
ture and rearranges it, one has 

dv u /~: 
- -- = ------------------

dP (-RT dC/dU) + P 
dv dv 

whereu = (1 - Elv),letting 

and 

T = constant 

-RTdC / du = L 
dv dv 

one has 

dv J -- = -----
dP L + P 

T = constant 

(2) 

(3) 

(4) 

(5) 

If J and L are constant with pressure changes then the 
equation is identical with the so-called Tait equation. 
We say so-called Tait equation because as explained by 
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Table I: Association Equations for Continuous and Discontinuous Cases 

,..------Continuous case-e -----~ 
Condition-all species present 

c. = C. 
Cz = Cz ; 2:=:; X :=:; m 

= 0; m < X 

m is the size of the 
largest species 

Cz = Nz /v 
N z = no. of moles of 

particles of size x in mass w 
v = volume 

Equilibrium constants (double index) 

c. + Cz p Cz+. 

K _ Cz+l 
•• % - C.C

z 

1 :=:; X 

Equilibrium constants (single index) 

K. = 1 
x-I C 

K z = ./2 II K •.• = --=-
y=1 C. z 

K z = 0; m < X 

m m 
2: Cz = 2: K zC.z 

x=1 1 

Hayward 148 this is not the equation originally proposed 
by Tait but rather that called the Tait equation by 
Tamann. An interesting discussion of the various 
empirical two-constant compressibility equations is to 
be found in Hayward while a comparison of these equa
tions is given by MacDonald. 14b As discussed by Hay
ward, the fit of the various equations depends on the 
quality of the data. Up to rather high pressures most 
of the proposed equations fit about equally as well; 
therefore one has to employ other criteria in choosing 
which equation to use. For practicality in interpola
tion one would as a matter of course use the simplest 
equation compatible with the precision desired. For 
use in drawing theoretical deductions the equation to be 
used is the one with the soundest theoretical basis. On 
this ground we have chosen to use eq 5 which we shall 
name the general compressibility equation (GeE) or the 
Tamann-Tait equation. In this equation which from 
its derivation is applicable to gases, liquids, and solids, 
it is not predetermined whether J and L are constant 
with pressure, temperature or not. This depends en
tirely on the state and conditions. For gases, J and L 
are apparently variables. For liquids there are various 

,..-----DiscontinuOuB ca.ee-e ---~ 
Gap exists-some species absent 

c. = C. 
Cz = 0; 2:=:; X < a 

= Cz ; a:=:; x:=:; m 
= 0; m < X 

m is the size of the largest species 
Note: The gap need not start at 

2 but could start at 3 or 4. This ' 
entails only slight modification. 

Equilibrium constants (double index) 

Equilibrium constants (single index) 

K. = 1 
K z = 0 

K = Ca 

a ct a>2 

C2 
K2 = - = ./~ •.• 

2C.2 
x-I 

K z = Ka II K •.• 
y=a 

K% = 0; m < X 
m m 

a = 1 

2: Cz = C. + 2: K.C." 
%=1 V-a 

Actually this definition is redun
dant, since considering the con
ditions on K z and Cz the con
tinuous definition can be used. 

cases; for liquid Helium I and II both J and L are con
stant with pressure;5 for Helium I, stable above the X 
point, J is constant with temperature, L varies; for 
Helium II, stable below the X point, LIJ is constant 
with temperature with both J and L varying; according 
to other authors for a single class of substances J IVa is 
constant (va is specific volume at a reference tempera
ture) with temperature, both J and L being constant 
wi th pressure. 15 . 16 In the case of the solid alkali metals6 

both J and L are constant with pressure (Tamann
Tait law holds) . Evidently a discussion of the com
pressibility equation of state will revolve around the 
constancy of J and L. 

(14) (a) A. T. J. Hayward, N . E . L. Report 295, Nat!. Eng. Lab., 
E. Kilbride, Glasgow, Scotland, 1967; Brit. J. Appl. PhY8., 18, 
965 (1967). (b) J . R. MacDonald, Rev. Mod. Phys., 41, 316 
(1969). 

(15) See for instance: A. Wohl, Z. Phys . Chem., 99, 234 (1921); 
A. Carl ibid., 101, 238 (1922); R. E. Gibson and O. H. Loeffler, J. 
Phys. Chem., 43, 207-217 (1939). 

(16) R . Ginell and A. M. Ginell, "Humidity and Moisture," Vo!' III, 
A. Wexler and W. A. WiJdhack, Ed., Reinhold Publishing Co., New 
York, N. Y ., 1965, pp 363-386. 
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Some general relationships can be derived. One can 
. rewrite eq 3 as 

din u 1 
~=J (6) 

from whence on integrating 

u = Ee fdv / J (7) 

E = constant of integration. From eq 7 and eq 1 we 
get that 

PEefdv / J 

C = RT (8) 

J and L Constant with Pressure. An important case 
of the compressibility equation is that when J and L are 
constant with pressure. Here eq 7 becomes 

(1 - ;) = Eev
/
J (9) 

(10) 

and 

L;iC j wRT 
Zn = L;C

j 
= MOvPEev/ J (11) 

where Zn is the number average degree of association. 
Zn exhibits a minimum with an increase in pressure. 
Differentiating eq 11 with respect to volume, and using 
eq 5 with J and L constant, we have 

dZn = zn[! - ~Ji 
dv v PJ 

Since at the minimum dZn/dv = 0, hence at this point 

v 
p 

J 
L 

(12) 

All these equations are the same for both the continuous 
and the discontinuous cases, and the quantities (1 - B/
v), C and Zn are all calculatable in terms of constant of 
integration, E. In previous publications? on the con
tinuous case, the equations are slightly different from 
those given above, being given in terms of another inte
gration constant, A . They can be reconciled by set
ting 

E = ARTw/Mo (13) 

where A is the constant of integration evaluated in ref 7. 
In that work A was evaluated by making the assump
tion that Zn = Zw = 1 when P/v = LjJ. This is true 
at the point where Zn is a minimum. l •7 Since Zw 
and Zn, the weight and number average degrees of 
association, are comparable quantities their behavior is 
similar and Zw should show a minimum around the 
same point where Zn does. However, since from ref 
4b 

cp = -d In Ct/dv = A(L/J)vev
/ J (14) 
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and from ref 1, Zw = l/vcp, then 

(15) 

But the right-hand side of eq 15 exhibits no minimum, 
hence at pressures less than the pressure at the min
imum, Zw becomes less than Zn. This is manifestly 
impossible, since from the definitions of Zw and Zn, 
their behavior must be parallel. Zw must always be 
greater than, or equal to Zn. 

Examining the derivation of Zw in ref 1, we see that 
eq 16 is derived under the assumption th'at dK.jdv = O. 
If all the j-mers are present, as they are in the contin
uous case, this is probably justified, but if the j -mers be
tween j = 2 and j = ex are absent, ex being a new var
iable, the size of the smallest of the multiply packed j
mers, then it is not justified. Since K", = 0 for x < ex 

and K", ,e 0 for x ~ a, then as the pressure changes and 
species appear and disappear, a changes in value. 
Under these conditions the assumption that dK.jdv = 
o is invalid. 

If we redefine cp to be 

(16) 

then (aK"/ av),,, = 0 and Zw = l / vcp in terms of the 
new definition of cpo This can readily be seen by re
deriving the relationship of cp and Zw in the same way 
asinref4b. 

Now from eq 1 we have 

where 

and 

- RT(OC/av)", + P 
(au/av)", 

J. 
L. + P 

J. = u/(ou/ ov) .. 

L. = -RT(aC/av)", 
(au/av)", 

(17) 

(18) 

(19) 

These definitions of J. and L. are analogous to the def
initions of J and L which one defined in terms of the 
total derivatives; but while J and L are constant with 
pressure changes, J. and L. are not constants. 

Now since C = L;K",C1z 

(aC/Ov)", = L;xK",C1"(a In Cl/av)", 

= -cpL;xCz (20) 

Whence using eq 19 

(21) 
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From eq 1, Pu = CRT; hence 

PrpLXC" 
A = C PrpZn 

or 

A 
Zn =

Prp 

(22a) 

(22b) 

for the discontinuous case. This result is analogous to 
that in the continuous case where 

Zn = LjJPrp (22c) 

From eq 15 and 22b one can see that when (and if) 
Zn = Zw, then A = P Iv; but there is no necessity for 
this to occur at the pressure corresponding to the min
imum in Zn. In Table II we have summarized the 
relevant equations for the continuous and discontin
uous cases. 

It can be seen by examining Table II that the defini
tion of Zn has not changed in going from the contin
uous case to the discontinuous case, but that the def
inition of Zw has changed due to the appearance of the 
new variable A. The problem now has become the 
evaluation of the constants of integration. As yet this 
is not possible in all cases. 

Table IT: Summary of Equations for the Degree of 
Aggregation, Zn and Zw for the Continuous and 
Discontinuous CasesQ 

Continuous Discontinuous 
case case 

Zn 
L 

Zn X L. 
= Jp", = P", = J.P", 

1 1 
= APve·,J = A'Pve·/J 

RTw/Mo RTw/ Mo 
EPve·,J E'Pve·IJ 

Zw = l / v", Zw = l / v", 
J 1 

ALv'e·,J A'XPv'e·'J 

JRTw/ Mo RTw/ Mo 
ELv'e·/J E'Xv'e· /J 

2841 

'" = _(d l:v CI) "'= _ (() l~ Cit 
= (AvLe· IJ) / J = A'Xve· IJ 

• The constant A is different for the continuous and discontinuous 
cases. J and L are experimental and independent of which case is 
chosen for analysis. eX = Lvi J. and it is a variable with pressure. 

Further work is in progress on the mathematical and 
conceptual development of this theory. 
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